Joint Bachelor Course on Organic Agriculture 2014

Lecture 5: Soil fertility and organic fertilizers in organic farming

› Ivan Manolov 1 (Agricultural University, Plovdiv),
› Ardian Maci 2 (Agricultural University of Tirana)

SNF/SCOPES
Changings of soil pH depending on agricultural systems

Source: Fließbach et al., 2007, Agr Ecosys Environ, 118
Soil properties in agricultural systems (DOK long term trial)

Source: Mäder, Fließbach et al., 2002, Science 296

A Physical

- Percolation stability
- Aggregate stability
- Bulk density

B Chemical

- pH
- Magnesium
- Calcium
- Phosphorus
- Potassium

C Microbial

- Microbial biomass
- Mycorrhiza
- Saccharase
- Dehydrogenase
- Protease
- Phosphatase

D Faunal

- Earthworm biomass
- Earthworm abundance
- Spiders
- Staphilinids
- Carabids

Legend:
- BIODYN
- CONFYM
- BIOORG
- CONMIN

Assoc. Prof. Ivan Manolov, Bulgaria
DOK: soil microbial biomass

Soil microbial biomass (kg C_{mic} ha^{-1})

- NOFERT
- CONMIN
- BIODYN
- BIOORG
- CONFYM

Source: Maeder, FiBL, 2012

Calculated for 0-20cm at average density of 1.4 g cm^{-3}

Assoc. Prof. Ivan Manolov, Bulgaria
Rhizosphere

Contact zone between roots and soil
› Abundance of bacteria around root tip

Zone around roots rich on:
› Organic matter released from the roots, which is abundant food for soil biota Soil micro-organisms

Roots exude mucigel
› Mixture of organic compounds
› Nutrition and energy for MO
Earthworms

› Important soil fertility indicator
› Soil acidity tolerance until pH< 5
› Processing plant residues
› Forming water stable soil aggregates
› Incorporate OM in soil
› Enrich topsoil with nutrients and humus
› Cultivating soil by creating channels
› Facilitating drainage
› Allow roots explore grow deeper, along nutrient occurrence

1. Lumbricus terrestris
2. Allobophora caliginosa

Source: Brady, The nature and properties of soils. 1974
Compost

<table>
<thead>
<tr>
<th>green</th>
<th>brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh (straw) manure</td>
<td>Straw</td>
</tr>
<tr>
<td>Rotted manures</td>
<td>Cornstalks</td>
</tr>
<tr>
<td>Grass clippings and Green leaves</td>
<td>Dried leaves</td>
</tr>
<tr>
<td>Lawn & garden weeds</td>
<td>Sawdust, wood, paper</td>
</tr>
<tr>
<td>Food wastes</td>
<td>Hardwood bark</td>
</tr>
<tr>
<td>Fruit wastes</td>
<td>Softwood bark</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>Peat moss</td>
</tr>
<tr>
<td>Clover herbage</td>
<td>Branches</td>
</tr>
<tr>
<td>Urine (cattle or sheep)</td>
<td>Rice hulls</td>
</tr>
<tr>
<td>Blood meal</td>
<td>Newspaper</td>
</tr>
<tr>
<td>Coffee grounds</td>
<td>Pine Needles</td>
</tr>
</tbody>
</table>

http://www.norganics.com/applications/cnratio.pdf
http://www.homecompostingmadeeasy.com/carbonnitrogenratio.html
Compost materials

Green and brown components for building up compost heaps

Assoc. Prof. Ivan Manolov, Bulgaria
Approaches to soil fertilization

Conventional
› Provide required nutrients to each crop in a soluble form that plants can use immediately (high input)

Organic
› Provide required nutrients by decomposition of organic matter and natural chemical breakdown of these materials putting the nutrients into forms that are available to crops.
› No chemical nitrogen fertilizers
› No molluscicides
› Manure should be mixed in the soil
› Grass-clover mixtures are common in organic rotations
DOK experiment

<table>
<thead>
<tr>
<th>Organic</th>
<th>Conventional (Integrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIODYN bio-dynamic</td>
<td>BIOORG bio-organic</td>
</tr>
<tr>
<td>Composted FYM and Slurry</td>
<td>Rotted FYM and slurry rockdust</td>
</tr>
</tbody>
</table>

Mechanical weed control
Indirect disease control
Biocontrol for pests

Herbicides (thresholds)
Fungicides (thresholds)

Diodynamic preparations
Copper-sulphate

Insecticides (thresholds)
Plant growth regulators
Organic fertilizers – benefits

› Physical
 › Soil stability (soil aggregates, erosion)
 › Increase soil porosity (aeration)
 › Improves water holding capacity

› Bio-chemical
 › Cation exchange capacity (CEC)
 › Nutrient availability
 › Provide nutrients (macro and micro elements)
 › Stimulate micro flora and fauna
 › Protects plants from disease

Organic fertilizers

Soil structure: bio-dynamic with composted

Soil structure: conventional without manure

Source: Maeder, FiBL, 2012
Farm Yard Manure FYM

› Animal excrements, urine and bedding materials (straw)
› Varying quantities, decomposition stages, livestock diets cause range of nutrient composition in FYM

› Impacting conditions
 › Type and age of animals
 › Type of forage and food
 › Concentrated food: more excrements (P-rich)
 › Juicy forages: more urine (N and K-rich)
 › Bedding material
 › Enriched with nutrients
 › High usage per livestock unit per day

Assoc. Prof. Ivan Manolov, Bulgaria
On-farm fertilization

Nutritional cycle on farms

livestock → manure and compost

forage crops → soil

mineral elements
On-farm fertilization

- On-farm fertilizer supply in organic agriculture possible
- Fertilizing schedule and outline
 - Sufficient and optimal nutrient use of manure resources
- Priority to manure resources
 - Crops, costly to grow and harvest
 - Cash crops (vegetable), field crops, roughage
 - For livestock production
 - fodder crops
 - Fruit crops and vineyards
Nutrient content of FYM

Source: Dr Popp presentation, IPNI project fertilizer recommendations, 2013
Manure composting

 Advantages

› Cost-efficient application
 › Less volume and mass
 › Directly applicable
› Uniform application
› Org. N and P availability
› Reduced/no NH$_3$-loss
› More Humus
› Increased CEC
› Reduced viable weed seeds
› Reduces pathogens
› No suppress of seed germination

 Disadvantages

› Loss of nitrogen as NH$_3$
› Additional costs/input
 › Time, labor, machinery, land, constructions (e.g. impermeable ground)
› No starter fertilizer effect

Assoc. Prof. Ivan Manolov, Bulgaria
Manure application

EU restrictions on manure application

› Manure quantity limited to nutrient equivalent of produced manure
 › by max. 2.5 to 3 grazing livestock units per hectare

› N quantity per hectare from manure
 › ≤ 170 kg/ha for field crops
 › ≤ 210 kg/ha for pastures

› Organic Aim
 › Use of own livestock manure
Manure application

Time
- Autumn before deep tillage
- Early spring before deeper tillage (the most suitable)
- Application before deep tillage allows manure to be located in deeper soil layers where there is more moisture during summer
 - Continuing mineralization of organic matter

Methods
- Broadcasting - uniformly broadcasting of manure on soil surface
- Side dressing/Band placement (suitable for permanent crops)
- N losses during/after application
 - Primarily: volatilization of NH₃-N
 - Avoid application on hot, dry, windy days
 - Reduced if it rains shortly after application and low air temperature
 - Best: quick incorporation into the soil (max. 12 hours after application)
Nutrient content of slurry of different farm animals

Source: Dr Popp’s presentation, IPNI project fertilizer recommendations. 2013
Summary

› Nutrition of plants in organic system depend mainly on natural cycles of nutritional elements

› Soil microorganisms play important role for plant nutrition
 › Living symbiosis with plants (N fixing bacteria and root mycorrhizae). Nutrients’ delivery (N, P, K, micronutrient) directly in plant roots
 › Free living soil microorganisms decompose organic matter releasing available forms of nutrients for the plants (ions).

› Organic fertilizers (manure, slurry, composts, green manures) are important source of energy for soil ecosystem and nutrients for microorganisms and growing plants.
Contact information

Dr. Ivan Manolov
Associate professor
Agricultural University, Povdiv
Dept. of Agrochemistry and Soil Science
Mendeleev str 12
Plovdiv 4000
Bulgaria
E-mail: manolov_ig@yahoo.com
References

- Aggregate Stability
 http://soilquality.org/indicators/aggregate_stability.html
 Last access: 18th April 2014

- Benefits of Mature Compost
 Last access: 22nd April 2014

- Carbon to Nitrogen Ratios of Various Waste Materials
 http://www.norganics.com/applications/cnratio.pdf
 Last access: 22nd April 2014

- Classification of soil water
 http://www.agriinfo.in/?page=topic&superid=4&topicid=279
 Last access: 22nd April 2014

- Direct deposition
 http://www.extension.umn.edu/distribution/cropsystems/components/7401_02.html
 Last access: 8th November 2013

References

- **How Compost Happens**

 http://commons.wikimedia.org/wiki/File:How_Compost_Happens.gif
 Last access: 22nd April 2014

- Manure characteristics

 ftp-fc.sc.egov.usda.gov/CA/technical/cnmp/certification/manurecharMWPS.pdf
 Last access: 22nd April 2014

- Soil organisms

 http://www.fao.org/docrep/009/a0100e/a0100e0d.htm
 Last access: 20th March 2014

- The Carbon:Nitrogen Ratio

 www.homecompostingmadeeasy.com/carbonnitrogenratio.html
 Last access: 22nd April 2014
Acknowledgement

This lesson was prepared within the project „Advancing training and teaching of organic agriculture in South-East Europe (Albania, Bosnia and Herzegovina, Kosovo, Bulgaria and Hungary)“, funded by the Swiss National Science Foundation (SNFS) within the SCOPES program 2009-2012 (project No. IZ74Z0_137328).