Joint Bachelor Course on Organic Agriculture 2014

Lecture 2: Organic agriculture as multifunctional model for economic, social and ecological goals

Anna Divéky-Ertsey (Corvinus University)
Conventional / industrialised agriculture

- Production/outcome oriented (high yields/turnovers in short time)
- Reducing regional and local landscape characteristics
- Favouring large farms and wide distribution
- Value chain
 - Distorting world market (complex import export structures, added value detached from environmental service and regional development)
 - Questionable burden sharing along value and production chain

Environmental impacts

- Devastating environmental consequences
- Biodiversity (losses of species, varieties, habitats, beneficial interactive services)
- Aquatic ecosystem
- Air (pollution by agricultural emission (e.g. methane), no compensation potential carbon sequestration)
- Surface degradation (destroyed ecosystem functionality, no natural cycles)
- Soil degradation/ salinisation/ contamination (e.g. pesticide residues)
 - Structural degradation (physical and bio-chemical (nutrients) attributes stopped)
 - intensive soil management, inadequate techniques, inadequate crop rotation, monoculture, specialisation
Desertification does not refer to the moving forward of existing deserts but to the formation, expansion or intensification of degraded patches of soil and vegetation cover.

Source: FAO
Negative environmental effects of intensive agriculture

Ground and surface water

- Mismanaged agricultural water use damages yield quality
 - crop specific permanent welting point
 - appropriate amount of water at needed time
 - E.g. avoid mouldering and deformed development

- Losses
 - inappropriate irrigation methods increasing evapotranspiration, surface run-off, lacking water holding capacity (strong infiltration, fertile soil lacks water)
 - Need of balanced irrigation-drainage farm system via adequate soil management (e.g. avoiding soil covering)

- Contamination
 - chemical fertilisers, pesticides

Source: FAO Aquastat

Field application 25%
Farm distribution 15%
Irrigation system 15%
Water effectively used by crops 45%
Evolution of Global Water Use
Withdrawal and Consumption by Sector

Note: Domestic water consumption in developed countries (500-800 litres per person per day) is about six times greater than in developing countries (60-150 litres per person per day).

Wrong irrigation methods of cotton fields
 › Over exploitation
 › Water amount decreased -90%
 › Surface decreased -75%
 › No proper soil management
 › Too intensive use of chemicals
 › Reduced fish population
 › Health problems (respiratory diseases because of the polluted sediment)
 › Social problems by population (no fish – no job)
Environmental pollution is not only an ecological but as well a socio-economic problem.

Pretty et al. 2000

<table>
<thead>
<tr>
<th>Cost category</th>
<th>UK (£ million)</th>
<th>Range (£ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Damage to natural capital — water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. Pesticides in sources of drinking water</td>
<td>120</td>
<td>84–129</td>
</tr>
<tr>
<td>1b. Nitrate in sources of drinking water</td>
<td>16</td>
<td>8–33</td>
</tr>
<tr>
<td>1c. Phosphate and soil in sources of drinking water</td>
<td>55</td>
<td>22–90</td>
</tr>
<tr>
<td>1d. Zooneses (esp. Cryptosporidium) in sources of drinking water</td>
<td>23</td>
<td>15–30</td>
</tr>
<tr>
<td>1e. Eutrophication and pollution incidents (fertilisers, animal wastes, sheep dips)</td>
<td>6</td>
<td>4–7</td>
</tr>
<tr>
<td>1f. Monitoring and advice on pesticides and nutrients</td>
<td>11</td>
<td>8–11</td>
</tr>
<tr>
<td>2. Damage to natural capital — air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. Emissions of methane</td>
<td>280</td>
<td>248–376</td>
</tr>
<tr>
<td>2b. Emissions of ammonia</td>
<td>48</td>
<td>23–72</td>
</tr>
<tr>
<td>2c. Emissions of nitrous oxide</td>
<td>738</td>
<td>418–1700</td>
</tr>
<tr>
<td>2d. Emissions of carbon dioxide</td>
<td>47</td>
<td>35–85</td>
</tr>
<tr>
<td>3. Damage to natural capital — soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a. Off-site damage caused by erosion</td>
<td>14</td>
<td>8–30</td>
</tr>
<tr>
<td>3b. Organic matter and carbon dioxide losses from soils</td>
<td>82</td>
<td>59–140</td>
</tr>
<tr>
<td>4. Damage to natural capital — biodiversity and landscape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a. Biodiversity/wildlife losses (habitats and species)</td>
<td>25</td>
<td>10–35</td>
</tr>
<tr>
<td>4b. Hedgerows and drystone walls</td>
<td>99</td>
<td>73–122</td>
</tr>
<tr>
<td>4c. Bee colony losses</td>
<td>2</td>
<td>1–2</td>
</tr>
<tr>
<td>4d. Agricultural biodiversity</td>
<td>+d</td>
<td>+</td>
</tr>
<tr>
<td>5. Damage to human health — pesticides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a. Acute effects</td>
<td>1</td>
<td>0.4–1.6</td>
</tr>
<tr>
<td>5b. Chronic effects</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6. Damage to human health — nitrate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7. Damage to human health: microorganisms and other disease agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a. Bacterial and viral outbreaks in food</td>
<td>169</td>
<td>100–243</td>
</tr>
<tr>
<td>7b. Antibiotic resistance</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7c. BSE* and nvCJD</td>
<td>607</td>
<td>33–800</td>
</tr>
<tr>
<td>Total</td>
<td>2343</td>
<td>1149–3907</td>
</tr>
</tbody>
</table>
Organic agriculture as a multifunctional model

Solution on the problems of conventional agriculture is a new multifunctional agricultural model

- In addition to food security, it is possible to organise the contributions of agriculture and related land-use into three main sets of functions
 - Environmental, economic, social

The three functions are strongly inter-related. Their relative importance depends on strategic choices at the local and national levels. Similarly, their impacts should be evaluated over time.

Organic agriculture is a working model for multifunctional agriculture
Definition of organic agriculture

"Organic Agriculture is a production system that sustains the health of soils, ecosystems and people. It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects. Organic Agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved."

Organic versus Conventional: Approach

<table>
<thead>
<tr>
<th>Paradigms</th>
<th>Organic farms</th>
<th>Non-organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology</td>
<td>Farm is part of broader eco- and socio-cultural system, natural conditions are accepted and adjusted</td>
<td>Short term profit oriented, maximization of labour and technology efficiency</td>
</tr>
<tr>
<td>Methodology</td>
<td>Balancing between the different parts of farming system, avoiding losses</td>
<td>Technology and output oriented</td>
</tr>
<tr>
<td>Epistemology</td>
<td>Observation, diagnosis, therapy, prevention and risk avoidance</td>
<td>Observation, analysis, policy decision, technological framework</td>
</tr>
</tbody>
</table>

Source: Adapted from Fryer and Bingen 2012
Agriculture’s different roles and functions

The inescapable interconnectedness of agriculture’s different roles and functions.
Multifunktional Model - Resource Sufficiency

Functions of crops within a farming system

- Human nutrition
 - quality
 - quantity
 - security

- Medicinal value
 - for humans
 - for domestic animals

- Animal fodder
 - quality
 - quantity
 - security

- Cultural functions
 - crops as part of cultural identity
 - religious importance
 (offerings, special dishes)

- Functions within the cropping system
 - maintain soil fertility
 - reduce pests and diseases
 - component for mixed cropping
 - stabilize production

- Raw material for construction and handicraft
 - quality
 - quantity

- Marketing and income generation
 - quality/market requirements
 - quantity
 - timing

Crop 1 is a typical multipurpose crop with high importance for most functions (except marketing), whereas crop 2 is a food crop important for nutrition and marketing, but not for other functions mentioned.

Source: Christinck, Dhamotharan and Weltzien, 2005.
Principles of organic farming

Principle of Health
› To produce food of high nutritional quality in sufficient quantity
› To give all livestock conditions of life that allow them to perform all aspects of their innate behaviour

Principle of Ecology
› To work as much as possible within a closed systems with regard to organic matter and nutrient elements
› To encourage and enhance biological cycles within the farming system, involving microorganisms, soil flora and fauna, plants and animals
› To maintain and increase the long-term fertility of soils

Principle of Care
› To avoid all performs of pollution that may result from agricultural techniques
› To maintain the genetic diversity of the agricultural system and its surroundings, including the protection of plant and wildlife habitats
To use as far as possible renewable resources in locally organised agricultural systems

Principle of Fairness
› To allow agricultural producers an adequate return and satisfaction from their work including a safe working environment

Source: Lampkin 1992
Environmental effects of organic vs conventional

<table>
<thead>
<tr>
<th>Organic agriculture is</th>
<th>much better</th>
<th>better</th>
<th>equal</th>
<th>worse</th>
<th>much worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiversity and Landscape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetic diversity</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Floral diversity</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Faunal diversity</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Habitat diversity</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Landscape</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Resource depletion</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Nutrient resources</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Energy resources</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Water resources</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Climate change</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>CO₂</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>N₂O</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>CH₄</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Ground and surface water pollution</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Nitrate leaching</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Phosphorus runoff</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Pesticide emissions</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Air quality</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>NH₃</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Pesticides</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Soil fertility</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Organic matter</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Biological activity</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Soil structure</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Soil erosion</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Based on Stolze et al. (2000), adapted
Principle of Health

High nutritional quality food of sufficient quantity
› Nutritional quality (flavonoids, polyphenols, vitamins)
› Structural quality (e.g. meat structure, ratio of fibers)
› Safety and health effects (pesticide residues, nitrates, artificial additives) (Baker et al. 2002)

Livestock conditions
› Livestock health should be maintained through good preventive husbandry, animal welfare and appropriate housing and feeding systems (Lund & Algers 2003)
 › Animal specific balanced feeding (physiology-adapted)
 › Using food largely produced on the farm
 › Stress reduction
› Operate with highest welfare standards
› No prophylactic drug use in veterinary treatment
› Quality and not quantity in the production (milk, egg production)
› Suitable choice by variety using
Principle of Health

Example Animal Husbandry

<table>
<thead>
<tr>
<th>Farm System</th>
<th>Organic</th>
<th>Non-Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Husbandry</td>
<td>Low input</td>
<td>High performance</td>
</tr>
<tr>
<td></td>
<td>- Own fodder</td>
<td>- Large herds</td>
</tr>
<tr>
<td></td>
<td>- Long life span</td>
<td>- High fodder input</td>
</tr>
<tr>
<td></td>
<td>- Regulated antibiotics</td>
<td>- Short life span</td>
</tr>
<tr>
<td></td>
<td>- Excluded hormones</td>
<td>- Use of antibiotics, hormones</td>
</tr>
<tr>
<td></td>
<td>- Free range</td>
<td>- ...</td>
</tr>
</tbody>
</table>

Source: Adapted from Fryer and Bingen 2012
Principle of Ecology

Work within a closed systems
› Connecting plant production and animal husbandry within a farm
› With regard to organic matter and nutrient elements
› Harvesting fodder
› Using own propagation material

Enhance biological cycles within the farming system
› To work with natural systems rather than regulating it
› Involving microorganisms, soil flora and fauna, plants and animals
› Promoting beneficial eco-functions and services among farm components
› Recycling plant and animal residues (manure/compost)
› Enhance N fixing
› In plant protection: natural enemies

Manage long-term soil fertility
› Manage naturally bio-chemical and physical soil condition
› Varying rooting systems via crop rotation (N fixing legumes, microbial activity, nutrient uptake, aeration, etc.)
› Adequate site and cultivation specific tillage (proper timing/tool)
› Natural input (Animal manure, avoid using pesticides, etc.)
Principles of Ecology

<table>
<thead>
<tr>
<th>Farm System</th>
<th>Organic</th>
<th>Non-Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant production and agro-ecology</td>
<td>Low input systems
- limited fertilizers,
- mechanical weeding
- biocontrol
- crop rotation (legumes)
- green manure
- integration of nature protection in farm
- …</td>
<td>High input systems
- Mineral fertilizers
- Herbicides/Pesticides
- Mono-cropping
- Large fields
- Segregation between farming and nature protection
- …</td>
</tr>
</tbody>
</table>

DOK trial
- Long term comparison of the different farming methods
- 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe.
- It was found that crop yields were 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%.
- Enhanced soil fertility and higher biodiversity found in organic plots (Mäder et al. 2002, Fließbach et al. 2007)
Principle of Care

Use of local renewable resources on farm
› Soil as renewable resources – protect, enhance biological activity and fertility of soil
› Composting plant residues
› Aim to produce more energy saving
› Base agricultural production on renewable energy resources (sun, wind, water, geothermic, biomass (Gelfand et al. 2010)

Mitigate pollution resulting from agricultural techniques
› Possible pollution sources (Pretty et al. 2000)
› Plant production: soil loss, pesticide and fertilisers residues, decreasing soil structure, erosion of landscape, nitrate leaching (Kramer et al. 2006)
› Animal husbandry: over grazing, antibiotic residues, soil and water contamination

Maintain genetic diversity of agricultural system/ surroundings
› Higher biodiversity – better safety in production
› Tools of organic agriculture enhancing/operating on biodiversity:
 › Crop rotation, intercropping, green channels, agroforestry (hedges, trees), beneficial insect strips, reduced tillage, participatory plant breeding
Effect of organic farming on biodiversity

Analysis of 95 scientific studies

Number of studies

- Plants: 2 positive, 0 negative
- Birds: 2 positive, 0 negative
- Mammals: 0 positive, 0 negative
- Earthworms: 4 positive, 0 negative
- Spiders: 4 positive, 4 negative
- Beetles: 4 positive, 4 negative
- Bees: 0 positive, 1 negative
- Butterflies: 3 positive, 8 negative
- Other Arthropods: 1 positive, 0 negative
- Soils microbes: 3 positive, 8 negative

Source: Pfiffer & Balmer 2009: Biolandbau und Biodiversität
A. Divéky-Ertsey 2014
Socio-economic wellbeing of agricultural producer

› Adequate return (long-term reliability and safety)
› Ensure income
› Satisfaction from their work
› Safe working environment
› Working place without stress
› Number of working hours
› Rural and local development
› Shared benefit/added value
› Active value chain participation

<table>
<thead>
<tr>
<th>Related environment</th>
<th>Organic farms</th>
<th>Non-organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agro and food industry</td>
<td>Local and regional players, diverse, partly international</td>
<td>Global players, uniformed commodities</td>
</tr>
<tr>
<td>Consumer and markets, certification</td>
<td>Diverse relations towards consumers and different markets, certification following specific guidelines, linked to subsidies</td>
<td>Impersonal consumer - retailer relation, big retailers, voluntary certification systems</td>
</tr>
<tr>
<td>Farm Economy and market orientation</td>
<td>Diversified production, investment into soils and biodiversity, several markets</td>
<td>Industry oriented, controlled by industry, one market, economy of scale</td>
</tr>
<tr>
<td>Information policy, research</td>
<td>State and farmer organisations, private small scale research, environmentally friendly oriented subsidies, farmer driven research</td>
<td>Industry, compatible with official agricultural policy, sector oriented subsidies</td>
</tr>
</tbody>
</table>

Source: Adapted from Fryer and Bingen 2012

A. Divéky-Ertesey 2014
Advantages of organic farming

- Certified production method, defined and regulated set of standards
- Internationally acknowledged organic label
 - Sound competition and fair trade on global scale
- No synthetic fertilizers and pesticides
- Guaranteed GMO-free chain
- Strengthening biodiversity
- Production of rich and fertile soil
- High overall outcome on environmental indicators/services
- Shared burden
 - Farmers’ higher production costs are compensated along supply chain
 - Farmer-consumer relation, strong responsibility
- Global contribution to food safety and security, bio diversity, soil and environment in the production countries
Contact

Dr. Anna Divéky-Ertsey

Assistant lecturer
Corvinus University of Budapest
Dept. of Ecological and Sustainable Farming Systems

anna.ertsey@uni-corvinus.hu
References

Acknowledgement

This lesson was prepared within the project „Advancing training and teaching of organic agriculture in South-East Europe (Albania, Bosnia and Herzegovina, Kosovo, Bulgaria and Hungary)“, funded by the Swiss National Science Foundation (SNFS) within the SCOPES program 2009-2012 (project No. IZ74Z0_137328).